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The inequality of Gronwall-Reid [1,3] (with inspiration from
Peano [2]) is a multi-purpose integral inequality most frequently used in
differential equations. Here we give a new proof whose value lies in its easy
generalization to the case where the Riemann differential "dt" is replaced
by a positive measure. In particular, relation (3), below, shows that the
classical Gronwall inequality is a simplest case of this more general type of
inequality. We comment on the applications after stating our theorems.

THEOREM 1 (Peano-Gronwall-Reid). Let f, oc, and f3 be continuous real­
valued functions defined on [to, + 00), f3 ~ O. Suppose that for all t ~ to

f(t)~oc(t)+ rf3(s)f(s)ds.
to

(la)

For T>to let S(to, T)={t where f(t)exp(-J:of3(s)ds) is maximized in
[to, TJ}. Then,

f(t) ~ oc* exp (( f3(s) dS), (lb)

where oc* = min {oc(tJ): tJ E S(to, T)}.

Proof Multiply across (1a) by exp( - no f3(a) da) and set g(t) =
f(t) exp( - J:o f3(a) da). We get

g(t) ~ oc(t) exp ( - (f3(a) da) + (g(S) d {exp ( - rf3(a) da)}, to ~ t.

(2)
To relate to our forthcoming generalizations we abbreviate (2) as

g(t) ~ &(t) + erg(s) dll- A,
to
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e = 1. (3 )
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The multi-index A. in (3) is used to emphasize the dependence of the
Stieltjes differentials dUl on t and the function /3. Observe that the III induce
degenerate probability measures on [to, + (0).

For any eE S(to, T)

g(t)::S;iX(t)+g(O)rdill
to

is a valid inequality for all t in [to, T]. In particular, it holds at any 8*
which minimizes a(· ) on S(to, T). Setting t = 0* and integrating,

After cancellations we get g(t) ::S;g(O*)::S; a(O*), to::S; t::S; T, which is (1b).

THEOREM 2. Let a, f, and /31' j = 1, ..., n, be nonnegative functions defined
on [to, + (0) which are bounded on finite intervals, f and the /3J measurable
with respect to P an arbitrary probability measure on [to, + (0). Suppose
that

f(t)::S; a(t) + ±r/3is)rJ(s) dP + erf(s) dP,
j=l to to

to::S; t, (4)

where O::S; qJ::S;! and 0 < e < 1. Then, for any T> to, there is 0Uo, T) E

[to, T] such that

to::S; t::S; T,
n e+

f(t)::S; K 1!~ a(s) + K 2 J~lL /3P(s) dP,

where K j = 2/(1- e), K2 = 4n/(I- ef, and Pj= 1/(1- qJ, j = 1, ..., n.

(5)

THEOREM 3. Let Ill' j = 1, ..., n, denote finite measures on [to, + (0) and·
1

let f be a nonnegative function integrable on finite intervals with respect to
every fJ.)'J' Suppose that

f(t)::s; a + /3 f rrJ(s) dill} + e ±rf(s) dfJ.l
J

'

J = 1 to j = m + 1 to

(6)

where a, /3 ~ 0 are constants and O::S; %::s;!. If fl)Jto, + 00)::S; M < + 00 for
all multi-index values IlJ' and 0 < e< l/nM, then

a+ /3cmM
f(t)::S;l-nM(e+f3c 1)' to::S; t, (7)

where c~ 1 is any number greater than /3nM/(l-enM).
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Proof of Theorem 2. The proof of Theorem 3 is analogous. Use the well
known inequality xy ~ cxP + (l/c) yq for x, y?: 0, C?: 1, q?: 2, and
l/p + l/q = 1 in (4) on fJj(s)rJ(s) with q = l/q}, p = 1/(1 - qJ As a result,

f(t) ~ o:(t)+Cjtl (fJrJ(s) dP+G+ 8) (f(s) dP. (8)

Take () E [to, T] so that lims --> ef(s) = sUPto";s,,; T f(s). Applying the lim sup
across (8) as t -+ () and consolidating terms gives (5), with K1(C) =
1/(1-8-nc-1) and K2(C)=CK1(C), where C is any number greater than
n/(1 - 8). The () + denotes the limit from the right. Minimizing K 2( c) with
respect to C gives the final form of (5). The same minimization can be
performed on the r.h.s. of (7).

Remark on the Applications. We have used Theorem 3 effectively in the
stability analysis of the system of difference equations X n + 1 =
Xn+ En Fn(Xn, (jJn) with perturbations (jJn, where the En are diagonal
matrices with positive terms along the diagonal. Such systems model
general recursive adjustment procedures under uncertainty when {(jJn}:= 0

is a stochastic process (see [4]).
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